Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Sci Adv ; 10(14): eadk9315, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569035

RESUMO

The joint expression of particular colors, morphologies, and behaviors is a common feature of adaptation, but the genetic basis for such "phenotypic syndromes" remains poorly understood. Here, we identified a complex genetic architecture associated with a sexually selected syndrome in common wall lizards, by capitalizing on the adaptive introgression of coloration and morphology into a distantly related lineage. Consistent with the hypothesis that the evolution of phenotypic syndromes in vertebrates is facilitated by developmental linkage through neural crest cells, most of the genes associated with the syndrome are involved in neural crest cell regulation. A major locus was a ~400-kb region, characterized by standing structural genetic variation and previously implied in the evolutionary innovation of coloration and beak size in birds. We conclude that features of the developmental and genetic architecture contribute to maintaining trait integration, facilitating the extensive and rapid introgressive spread of suites of sexually selected characters.


Assuntos
Lagartos , Seleção Genética , Animais , Fenótipo , Lagartos/genética
2.
Proc Natl Acad Sci U S A ; 121(14): e2320413121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530898

RESUMO

Understanding, predicting, and controlling the phenotypic consequences of genetic and environmental change is essential to many areas of fundamental and applied biology. In evolutionary biology, the generative process of development is a major source of organismal evolvability that constrains or facilitates adaptive change by shaping the distribution of phenotypic variation that selection can act upon. While the complex interactions between genetic and environmental factors during development may appear to make it impossible to infer the consequences of perturbations, the persistent observation that many perturbations result in similar phenotypes indicates that there is a logic to what variation is generated. Here, we show that a general representation of development as a dynamical system can reveal this logic. We build a framework that allows predicting the phenotypic effects of perturbations, and conditions for when the effects of perturbations of different origins are concordant. We find that this concordance is explained by two generic features of development, namely the dynamical dependence of the phenotype on itself and the fact that all perturbations must affect the developmental process to have an effect on the phenotype. We apply our theoretical framework to classical models of development and show that it can be used to predict the evolutionary response to selection using information of plasticity and to accelerate evolution in a desired direction. The framework we introduce provides a way to quantitatively interchange perturbations, opening an avenue of perturbation design to control the generation of variation.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Fenótipo
3.
J Exp Biol ; 227(Suppl_1)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449333

RESUMO

In Developmental Plasticity and Evolution, Mary-Jane West-Eberhard argued that the developmental mechanisms that enable organisms to respond to their environment are fundamental causes of adaptation and diversification. Twenty years after publication of this book, this once so highly controversial claim appears to have been assimilated by a wealth of studies on 'plasticity-led' evolution. However, we suggest that the role of development in explanations for adaptive evolution remains underappreciated in this body of work. By combining concepts of evolvability from evolutionary developmental biology and quantitative genetics, we outline a framework that is more appropriate to identify developmental causes of adaptive evolution. This framework demonstrates how experimental and comparative developmental biology and physiology can be leveraged to put the role of plasticity in evolution to the test.


Assuntos
Evolução Biológica , Biologia
4.
Evol Lett ; 7(5): 351-360, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37829499

RESUMO

Live birth is a key innovation that has evolved from egg-laying ancestors over 100 times in reptiles. However, egg-laying lizards and snakes can have preferred body temperatures that are lethal to developing embryos, which should select against prolonged egg retention. Here, we demonstrate that thermal mismatches between mothers and offspring are widespread across the squamate phylogeny. This mismatch is resolved by gravid females adjusting their body temperature towards the thermal optimum of their embryos. We find that the same response occurs in both live-bearing and egg-laying species, despite the latter only retaining embryos during the early stages of development. Importantly, phylogenetic reconstructions suggest this thermoregulatory behavior in gravid females evolved in egg-laying species prior to the evolution of live birth. Maternal thermoregulatory behavior, therefore, bypasses the constraints imposed by a slowly evolving thermal physiology and has likely been a key facilitator in the repeated transition to live birth.

5.
Evol Dev ; 25(6): 439-450, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37277921

RESUMO

Organisms modify their development and function in response to the environment. At the same time, the environment is modified by the activities of the organism. Despite the ubiquity of such dynamical interactions in nature, it remains challenging to develop models that accurately represent them, and that can be fitted using data. These features are desirable when modeling phenomena such as phenotypic plasticity, to generate quantitative predictions of how the system will respond to environmental signals of different magnitude or at different times, for example, during ontogeny. Here, we explain a modeling framework that represents the organism and environment as a single coupled dynamical system in terms of inputs and outputs. Inputs are external signals, and outputs are measurements of the system in time. The framework uses time-series data of inputs and outputs to fit a nonlinear black-box model that allows to predict how the system will respond to novel input signals. The framework has three key properties: it captures the dynamical nature of the organism-environment system, it can be fitted with data, and it can be applied without detailed knowledge of the system. We study phenotypic plasticity using in silico experiments and demonstrate that the framework predicts the response to novel environmental signals. The framework allows us to model plasticity as a dynamical property that changes in time during ontogeny, reflecting the well-known fact that organisms are more or less plastic at different developmental stages.


Assuntos
Adaptação Fisiológica , Modelos Biológicos , Animais , Adaptação Fisiológica/fisiologia
6.
DNA Res ; 30(3)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137526

RESUMO

The Mediterranean lizard Podarcis lilfordi is an emblematic species of the Balearic Islands. The extensive phenotypic diversity among extant isolated populations makes the species a great insular model system for eco-evolutionary studies, as well as a challenging target for conservation management plans. Here we report the first high-quality chromosome-level assembly and annotation of the P. lilfordi genome, along with its mitogenome, based on a mixed sequencing strategy (10X Genomics linked reads, Oxford Nanopore Technologies long reads and Hi-C scaffolding) coupled with extensive transcriptomic data (Illumina and PacBio). The genome assembly (1.5 Gb) is highly contiguous (N50 = 90 Mb) and complete, with 99% of the sequence assigned to candidate chromosomal sequences and >97% gene completeness. We annotated a total of 25,663 protein-coding genes translating into 38,615 proteins. Comparison to the genome of the related species Podarcis muralis revealed substantial similarity in genome size, annotation metrics, repeat content, and a strong collinearity, despite their evolutionary distance (~18-20 MYA). This genome expands the repertoire of available reptilian genomes and will facilitate the exploration of the molecular and evolutionary processes underlying the extraordinary phenotypic diversity of this insular species, while providing a critical resource for conservation genomics.


Assuntos
Cromossomos , Lagartos , Animais , Espanha , Anotação de Sequência Molecular , Genoma , Lagartos/genética
7.
Bioessays ; 44(9): e2100225, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863907

RESUMO

Evolutionary biology is paying increasing attention to the mechanisms that enable phenotypic plasticity, evolvability, and extra-genetic inheritance. Yet, there is a concern that these phenomena remain insufficiently integrated within evolutionary theory. Understanding their evolutionary implications would require focusing on phenotypes and their variation, but this does not always fit well with the prevalent genetic representation of evolution that screens off developmental mechanisms. Here, we instead use development as a starting point, and represent it in a way that allows genetic, environmental and epigenetic sources of phenotypic variation to be independent. We show why this representation helps to understand the evolutionary consequences of both genetic and non-genetic phenotype determinants, and discuss how this approach can instigate future areas of empirical and theoretical research.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Variação Genética , Genótipo , Fenótipo
8.
iScience ; 25(5): 104303, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35573201

RESUMO

Transgenerational inheritance of environmentally induced epigenetic marks can have significant impacts on eco-evolutionary dynamics, but the phenomenon remains controversial in ecological model systems. We used whole-genome bisulfite sequencing of individual water fleas (Daphnia magna) to assess whether environmentally induced DNA methylation is transgenerationally inherited. Genetically identical females were exposed to one of three natural stressors, or a de-methylating drug, and their offspring were propagated clonally for four generations under control conditions. We identified between 70 and 225 differentially methylated CpG positions (DMPs) in F1 individuals whose mothers were exposed to a natural stressor. Roughly half of these environmentally induced DMPs persisted until generation F4. In contrast, treatment with the drug demonstrated that pervasive hypomethylation upon exposure is reset almost completely after one generation. These results suggest that environmentally induced DNA methylation is non-random and stably inherited across generations in Daphnia, making epigenetic inheritance a putative factor in the eco-evolutionary dynamics of freshwater communities.

9.
Sci Adv ; 8(10): eabm2387, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35263124

RESUMO

Animal coloration is often expressed in periodic patterns that can arise from differential cell migration, yet how these processes are regulated remains elusive. We show that a female-limited polymorphism in dorsal patterning (diamond/chevron) in the brown anole is controlled by a single Mendelian locus. This locus contains the gene CCDC170 that is adjacent to, and coexpressed with, the Estrogen receptor-1 gene, explaining why the polymorphism is female limited. CCDC170 is an organizer of the Golgi-microtubule network underlying a cell's ability to migrate, and the two segregating alleles encode structurally different proteins. Our agent-based modeling of skin development demonstrates that, in principle, a change in cell migratory behaviors is sufficient to switch between the two morphs. These results suggest that CCDC170 might have been co-opted as a switch between color patterning morphs, likely by modulating cell migratory behaviors.

10.
Heredity (Edinb) ; 128(4): 271-278, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35277668

RESUMO

Species distributed across climatic gradients will typically experience spatial variation in selection, but gene flow can prevent such selection from causing population genetic differentiation and local adaptation. Here, we studied genomic variation of 415 individuals across 34 populations of the common wall lizard (Podarcis muralis) in central Italy. This species is highly abundant throughout this region and populations belong to a single genetic lineage, yet there is extensive phenotypic variation across climatic regimes. We used redundancy analysis to, first, quantify the effect of climate and geography on population genomic variation in this region and, second, to test if climate consistently sorts specific alleles across the landscape. Climate explained 5% of the population genomic variation across the landscape, about half of which was collinear with geography. Linear models and redundancy analyses identified loci that were significantly differentiated across climatic regimes. These loci were distributed across the genome and physically associated with genes putatively involved in thermal tolerance, regulation of temperature-dependent metabolism and reproductive activity, and body colouration. Together, these findings suggest that climate can exercise sufficient selection in lizards to promote genetic differentiation across the landscape in spite of high gene flow.


Assuntos
Lagartos , Adaptação Fisiológica/genética , Animais , Clima , Deriva Genética , Variação Genética , Genética Populacional , Humanos , Lagartos/genética
11.
Curr Zool ; 68(1): 41-55, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35169628

RESUMO

Color polymorphisms are widely studied to identify the mechanisms responsible for the origin and maintenance of phenotypic variability in nature. Two of the mechanisms of balancing selection currently thought to explain the long-term persistence of polymorphisms are the evolution of alternative phenotypic optima through correlational selection on suites of traits including color and heterosis. Both of these mechanisms can generate differences in offspring viability and fitness arising from different morph combinations. Here, we examined the effect of parental morph combination on fertilization success, embryonic viability, newborn quality, antipredator, and foraging behavior, as well as inter-annual survival by conducting controlled matings in a polymorphic lacertid Podarcis muralis, where color morphs are frequently assumed to reflect alternative phenotypic optima (e.g., alternative reproductive strategies). Juveniles were kept in outdoor tubs for a year in order to study inter-annual growth, survival, and morph inheritance. In agreement with a previous genome-wide association analysis, morph frequencies in the year-old juveniles matched the frequencies expected if orange and yellow expressions depended on recessive homozygosity at 2 separate loci. Our findings also agree with previous literature reporting higher reproductive output of heavy females and the higher overall viability of heavy newborn lizards, but we found no evidence for the existence of alternative breeding investment strategies in female morphs, or morph-combination effects on offspring viability and behavior. We conclude that inter-morph breeding remains entirely viable and genetic incompatibilities are of little significance for the maintenance of discrete color morphs in P. muralis from the Pyrenees.

12.
Evol Hum Sci ; 4: e43, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37588924

RESUMO

Evolutionary changes in brain and craniofacial development have endowed humans with unique cognitive and social skills, but also predisposed us to debilitating disorders in which these traits are disrupted. What are the developmental genetic underpinnings that connect the adaptive evolution of our cognition and sociality with the persistence of mental disorders with severe negative fitness effects? We argue that loss of function of genes involved in transcriptional regulation represents a crucial link between the evolution and dysfunction of human cognitive and social traits. The argument is based on the haploinsufficiency of many transcriptional regulator genes, which makes them particularly sensitive to loss-of-function mutations. We discuss how human brain and craniofacial traits evolved through partial loss of function (i.e. reduced expression) of these genes, a perspective compatible with the idea of human self-domestication. Moreover, we explain why selection against loss-of-function variants supports the view that mutation-selection-drift, rather than balancing selection, underlies the persistence of psychiatric disorders. Finally, we discuss testable predictions.

13.
Biodivers Data J ; 10: e90337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761656

RESUMO

The origin of the common wall lizards (Podarcismuralis) populations in south-eastern Europe (namely in Bulgaria and Romania), representing the north-eastern range border of this species, was addressed using mitochondrial DNA. We compared cytochrome b sequences from Bulgaria and Romania with those from the contiguous range in Central Europe that are available from previous studies. We recorded five main haplogroups in Bulgaria and Romania, belonging to the Central Balkan clade. However, haplogroup III was recorded in more localities than previously found. Additionally, signs of haplotype admixture were identified in several populations along the Danube River. The presence of the Southern Alps haplotype in one population from Otopeni, Bucharest (Romania) and its close phylogenetic relationships to north Italy populations suggests human-mediated introductions of this wall lizard clade in Romania. Our results confirm that P.muralis can have non-native lineages and admixture through active human-mediated transport.

14.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718699

RESUMO

The Mediterranean Basin has experienced extensive change in geology and climate over the past six million years. Yet, the relative importance of key geological events for the distribution and genetic structure of the Mediterranean fauna remains poorly understood. Here, we use population genomic and phylogenomic analyses to establish the evolutionary history and genetic structure of common wall lizards (Podarcis muralis). This species is particularly informative because, in contrast to other Mediterranean lizards, it is widespread across the Iberian, Italian, and Balkan Peninsulas, and in extra-Mediterranean regions. We found strong support for six major lineages within P. muralis, which were largely discordant with the phylogenetic relationship of mitochondrial DNA. The most recent common ancestor of extant P. muralis was likely distributed in the Italian Peninsula, and experienced an "Out-of-Italy" expansion following the Messinian salinity crisis (∼5 Mya), resulting in the differentiation into the extant lineages on the Iberian, Italian, and Balkan Peninsulas. Introgression analysis revealed that both inter- and intraspecific gene flows have been pervasive throughout the evolutionary history of P. muralis. For example, the Southern Italy lineage has a hybrid origin, formed through admixture between the Central Italy lineage and an ancient lineage that was the sister to all other P. muralis. More recent genetic differentiation is associated with the onset of the Quaternary glaciations, which influenced population dynamics and genetic diversity of contemporary lineages. These results demonstrate the pervasive role of Mediterranean geology and climate for the evolutionary history and population genetic structure of extant species.


Assuntos
Lagartos , Metagenômica , Animais , DNA Mitocondrial/genética , Variação Genética , Lagartos/genética , Filogenia , Filogeografia
15.
Genetica ; 150(3-4): 209-221, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34617196

RESUMO

Deciphering the genotype-phenotype map necessitates relating variation at the genetic level to variation at the phenotypic level. This endeavour is inherently limited by the availability of standing genetic variation, the rate of spontaneous mutation to novo genetic variants, and possible biases associated with induced mutagenesis. An interesting alternative is to instead rely on the environment as a source of variation. Many phenotypic traits change plastically in response to the environment, and these changes are generally underlain by changes in gene expression. Relating gene expression plasticity to the phenotypic plasticity of more integrated organismal traits thus provides useful information about which genes influence the development and expression of which traits, even in the absence of genetic variation. We here appraise the prospects and limits of such an environment-for-gene substitution for investigating the genotype-phenotype map. We review models of gene regulatory networks, and discuss the different ways in which they can incorporate the environment to mechanistically model phenotypic plasticity and its evolution. We suggest that substantial progress can be made in deciphering this genotype-environment-phenotype map, by connecting theory on gene regulatory network to empirical patterns of gene co-expression, and by more explicitly relating gene expression to the expression and development of phenotypes, both theoretically and empirically.


Assuntos
Adaptação Fisiológica , Variação Genética , Adaptação Fisiológica/genética , Evolução Biológica , Redes Reguladoras de Genes , Genótipo , Fenótipo
16.
Ecol Evol ; 11(23): 17238-17259, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938505

RESUMO

Maternal stress during gestation has the potential to affect offspring development via changes in maternal physiology, such as increases in circulating levels of glucocorticoid hormones that are typical after exposure to a stressor. While the effects of elevated maternal glucocorticoids on offspring phenotype (i.e., "glucocorticoid-mediated maternal effects") have been relatively well established in laboratory studies, it remains poorly understood how strong and consistent such effects are in natural populations. Using a meta-analysis of studies of wild mammals, birds, and reptiles, we investigate the evidence for effects of elevated maternal glucocorticoids on offspring phenotype and investigate key moderators that might influence the strength and direction of these effects. In particular, we investigate the potential importance of reproductive mode (viviparity vs. oviparity). We show that glucocorticoid-mediated maternal effects are stronger, and likely more deleterious, in mammals and viviparous squamate reptiles compared with birds, turtles, and oviparous squamates. No other moderators (timing and type of manipulation, age at offspring measurement, or type of trait measured) were significant predictors of the strength or direction of the phenotypic effects on offspring. These results provide evidence that the evolution of a prolonged physiological association between embryo and mother sets the stage for maladaptive, or adaptive, prenatal stress effects in vertebrates driven by glucocorticoid elevation.

17.
BMC Ecol Evol ; 21(1): 205, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34800979

RESUMO

BACKGROUND: Biological evolution exhibits an extraordinary capability to adapt organisms to their environments. The explanation for this often takes for granted that random genetic variation produces at least some beneficial phenotypic variation in which natural selection can act. Such genetic evolvability could itself be a product of evolution, but it is widely acknowledged that the immediate selective gains of evolvability are small on short timescales. So how do biological systems come to exhibit such extraordinary capacity to evolve? One suggestion is that adaptive phenotypic plasticity makes genetic evolution find adaptations faster. However, the need to explain the origin of adaptive plasticity puts genetic evolution back in the driving seat, and genetic evolvability remains unexplained. RESULTS: To better understand the interaction between plasticity and genetic evolvability, we simulate the evolution of phenotypes produced by gene-regulation network-based models of development. First, we show that the phenotypic variation resulting from genetic and environmental perturbation are highly concordant. This is because phenotypic variation, regardless of its cause, occurs within the relatively specific space of possibilities allowed by development. Second, we show that selection for genetic evolvability results in the evolution of adaptive plasticity and vice versa. This linkage is essentially symmetric but, unlike genetic evolvability, the selective gains of plasticity are often substantial on short, including within-lifetime, timescales. Accordingly, we show that selection for phenotypic plasticity can be effective in promoting the evolution of high genetic evolvability. CONCLUSIONS: Without overlooking the fact that adaptive plasticity is itself a product of genetic evolution, we show how past selection for plasticity can exercise a disproportionate effect on genetic evolvability and, in turn, influence the course of adaptive evolution.


Assuntos
Evolução Biológica , Seleção Genética , Adaptação Fisiológica/genética , Redes Reguladoras de Genes , Fenótipo
18.
J Evol Biol ; 34(11): 1793-1802, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34543488

RESUMO

Increases in phenotypic variation under extreme (e.g. novel or stressful) environmental conditions are emerging as a crucial process through which evolutionary adaptation can occur. Lack of prior stabilizing selection, as well as potential instability of developmental processes in these environments, may lead to a release of phenotypic variation that can have important evolutionary consequences. Although such patterns have been shown in model study organisms, we know little about the generality of trait variance across environments for non-model organisms. Here, we test whether extreme developmental temperatures increase the phenotypic variation across diverse reptile taxa. We find that the among-individual variation in a key life-history trait (post-hatching growth) increases at extreme cold and hot temperatures. However, variations in two measures of hatchling morphology and in hatchling performance were not related to developmental temperature. Although extreme developmental temperatures may increase the variation in growth, our results suggest that plastic responses to stressful incubation conditions do not generally make more extreme phenotypes available to selection. We discuss the reasons for the general lack of increased variability at extreme incubation temperatures and the implications this has for local adaptation in hatchling morphology and physiology.


Assuntos
Adaptação Fisiológica , Répteis , Animais , Temperatura Alta , Fenótipo , Temperatura
19.
Am Nat ; 198(3): 379-393, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403317

RESUMO

AbstractClimate can exert an effect on the strength of sexual selection, but empirical evidence is limited. Here, we tested whether climate predicts the geographic distribution and introgressive spread of sexually selected male color ornamentation across 114 populations of the common wall lizard, Podarcis muralis. Coloration was highly structured across the landscape and did not reflect genetic differentiation. Instead, color ornamentation was consistently exaggerated in hot and dry environments, suggesting that climate-driven selection maintains geographic variation in spite of gene flow. Introgression of color ornamentation into a distantly related lineage appears to be ongoing and was particularly pronounced in warm climates with wet winters and dry summers. Combined, these results suggest that sexual ornamentation is consistently favored in climates that allow a prolonged reproductive season and high and reliable opportunities for lizard activity. This pattern corroborates theoretical predictions that such climatic conditions reduce the temporal clustering of receptive females and increase male-male competition, resulting in strong sexual selection. In summary, we provide compelling evidence for the importance of climate for the evolution of color ornamentation, and we demonstrate that geographic variation in the strength of sexual selection influences introgression of this phenotype.


Assuntos
Lagartos , Animais , Cor , Feminino , Fluxo Gênico , Deriva Genética , Lagartos/genética , Masculino , Fenótipo , Reprodução
20.
Proc Biol Sci ; 288(1953): 20210226, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34157873

RESUMO

Diversifications often proceed along highly conserved, evolutionary trajectories. These patterns of covariation arise in ontogeny, which raises the possibility that adaptive morphologies are biased towards trait covariations that resemble growth trajectories. Here, we test this prediction in the diverse clade of Anolis lizards by investigating the covariation of embryonic growth of 13 fore- and hindlimb bones in 15 species, and compare these to the evolutionary covariation of these limb bones across 267 Anolis species. Our results demonstrate that species differences in relative limb length are established already at hatching, and are resulting from both differential growth and differential sizes of cartilaginous anlagen. Multivariate analysis revealed that Antillean Anolis share a common ontogenetic allometry that is characterized by positive allometric growth of the long bones relative to metapodial and phalangeal bones. This major axis of ontogenetic allometry in limb bones deviated from the major axis of evolutionary allometry of the Antillean Anolis and the two clades of mainland Anolis lizards. These results demonstrate that the remarkable diversification of locomotor specialists in Anolis lizards are accessible through changes that are largely independent from ontogenetic growth trajectories, and therefore likely to be the result of modifications that manifest at the earliest stages of limb development.


Assuntos
Lagartos , Animais , Evolução Biológica , Extremidades , Lagartos/anatomia & histologia , Lagartos/genética , Morfogênese , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...